Requirements Analysis

Requirements analysis can be applied at several different levels:
- Overall system design
- GIS application design
- Database design

Determines data, information, system components, data processing and analysis functions required by an organization, enterprise, individual user.

Information Systems Design Process

- Requirements analysis – specifies what a system is required to do based on user/stakeholder input
- Design – specifies how the system will address the requirements
- Implementation – translates design specifications into a working system

Requirements analysis is critical to the success of a project.

Requirements analysis for GIS applications

May need to cover requirements for:
- database design
- user interface design
- functional requirements
- hardware and software requirements
Requirements Analysis

Includes three primary activities:

- **Eliciting requirements**: communicating with stakeholders to determine their requirements.
- **Analyzing requirements**: determining whether the stated requirements are clear, complete, unambiguous, and consistent and resolving any problems.
- **Recording requirements**: documenting requirements in various forms, such as natural-language documents, use cases, user stories, or process specifications.

Requirements Analysis for GIS application design

Identification of users:
Who will use the system? - system users, end product users. What are their needs? what are their levels of expertise?

What are required products/outputs:

Evaluation of work flow:
what do the users need to do? what are they required to do? routine tasks? one off tasks? as yet undefined tasks?
types of data used, formats of data, data accuracy requirements, data display requirements
Steps in Database Design

1. Requirements analysis
2. Conceptual design
3. Implementation design
4. Physical design

- Data is the core of GIS and the quality of the system/application depends on quality of the data
- Database design is a fundamental component of GIS application design

Conceptual design

- Synthesis of information from requirements analysis according to semantic rules
- Outcome is a conceptual model
- The conceptual model describes entities, attributes and relations among entities independent of implementation details

Implementation Design

- Transforms the conceptual data model into an internal model - schema that can be processed by a particular Database Management System (DBMS)

Physical Design

- Involves design of internal storage structures, record formats, access methods, record blocking

Steps in requirements analysis for database design

1. Identify scope of the design effort
2. Establish metadata collection standards - who to interview, what to collect - how to structure interview
3. Identify user views
 - user view - subset of data used by a person in a specific context
 - can be identified by reviewing tasks, documents
4. Build a data dictionary
 - define and describe each item in detail: name, description, type, length, range and relationships
Steps in requirements analysis for database design

5. Identify data volumes and usage patterns: how much data is used, how frequently, how frequently does data change

6. Identify operational requirements

Establish Data Collection Standards

- Formalize the interview process

- Ideally use a structured interview process with standardized data collection forms

Survey form example

Organization Unit Profile

Organization:
Director:
Location:
Interviewer:
Date:
Describe the overall mission of your department
Provide an organizational chart including job descriptions

Task List

List tasks performed by a department and give estimates of how often this task is performed (routine/non-routine, daily, monthly, yearly)

<table>
<thead>
<tr>
<th>Task</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
</tr>
</tbody>
</table>
Task #_____ Data Requirements

Data Sources:
What data is used by the organization in the performance of this task?
What is the source of this data (in house, other department, outside)?
If in-house collection, describe collection method, including estimate of frequency of collection. Provide any data forms, if applicable.

Data Descriptions/contents
Describe the spatial reference of the data – (does it have one, need one)?
Describe the scale, resolution, accuracy and/or reliability of the data
What is the areal coverage of the data available/required? temporal coverage available/required?

Data Storage
What is physical format of the data?
What volume of data needs to be maintained?
How long is data maintained?
What archiving procedure is used if any?

Task #_____ Data Operations

Describe the operations/processing required for a task including frequency
List personnel involved in this task including amount of time each person spends on the task and their level of training
List the tools used in this task (hardware and software) and give their locations
List data (sources) used or produced in this task
Rate the current efficiency of this task:
[very efficient, efficient, poor]
Task #___ Information Products

Describe any products associated with this task

What is the intended purpose of this product?
Who is the intended audience [internal use, public access]?
What is the overall importance of this information?
Describe the spatial reference of this information.
Describe the accuracy, resolution and or reliability.
Are there required formats for the product?

Use Cases

A use case is a technique for documenting the potential requirements of a new system or software change.

A use case provides one or more scenarios that convey how the system should interact with the end user or another system to achieve a specific business goal.

Break down requirements into user functions.

Use Cases

A use case describes a sequence of interactions between a user and an application without specifying the user interface.

Each use case captures:
- The actor (who is using the application?)
- The interaction (what does the user want to do?)
- The goal (what is the user's goal?)

Use Cases

Example use case diagrams

actor

System boundary

Use cases
Functional requirements

Show how the use cases are to be satisfied.

Functional requirements define the internal workings of the software: the calculations, technical details, data manipulation and processing, and other specific functionality.

They are supported by non-functional requirements, which impose constraints on the design or implementation (such as performance requirements, security, quality standards, or design constraints).

Identify User Views

Subset of the data required by a particular user to make a decision or carry out some action.

Extracted by reviewing user tasks, use cases, and types of decisions. Forms, reports, graphs, maps can be useful information for defining views.

Build a Data Dictionary

Each data item identified in a view should be defined in detail.

Identify and document each item’s attributes: name, description, type, length, allowable range.

View Integration

Consolidate terms and eliminate redundancies.

User View

City of Seattle Maps
Data Dictionary – Feature Table

<table>
<thead>
<tr>
<th>Data Dictionary – Feature Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Feature</td>
</tr>
</tbody>
</table>

Data Dictionary – Feature Table

<table>
<thead>
<tr>
<th>Public Land Survey System</th>
<th>Feature Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Feature Name: Quarter Quarter Section</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Quarter Quarter Section</td>
</tr>
<tr>
<td>Feature Type</td>
<td>Quarter Quarter Section</td>
</tr>
<tr>
<td>Feature Notes</td>
<td>Quarter Quarter Section</td>
</tr>
<tr>
<td>Feature Details</td>
<td>Quarter Quarter Section</td>
</tr>
<tr>
<td>Control Points</td>
<td>Quarter Quarter Section</td>
</tr>
<tr>
<td>Additional Information</td>
<td>Quarter Quarter Section</td>
</tr>
</tbody>
</table>

Example:

- **Feature Name:** Quarter Quarter Section
- **Feature Type:** Quarter Quarter Section
- **Feature Notes:** Quarter Quarter Section
- **Feature Details:** Quarter Quarter Section
- **Control Points:** Quarter Quarter Section
- **Additional Information:** Quarter Quarter Section

Example Image:

- A map showing the location of a quarter quarter section within a larger survey area.
- The map includes grids and labels indicating the section's position within the overall survey.

Antenna:
- **Antenna:** Quarter Quarter Section
- **Quarter:** Quarter Quarter Section
- **Survey Station Number:** Quarter Quarter Section
- **Additional Information:** Quarter Quarter Section
Requirements analysis provides an initial understanding of the level of effort and realistic schedule required to implement a system or application envisioned by users.

A requirements analysis report forms a framework for a common understanding between the client and a developer in terms of breadth and scope of the envisioned system or application.

Issues arising from requirements analysis:

- Technical personnel and end users typically have different vocabularies. They can believe they are in perfect agreement until the finished product is supplied.

- Engineers and developers may be tempted to make the requirements fit an existing system or model, rather than develop a system specific to the needs of the client.

- Analysis may be carried out by engineers or programmers, rather than personnel with the people skills and domain knowledge to understand a client's needs properly.

- Requirements can be a moving target

Listen carefully, think creatively, be patient